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Abstract—With the rapid development of the intelligent video
surveillance (IVS), person re-identification, which is a difficult
yet unavoidable problem in video surveillance, has received
increasing attention in recent years. That is because computer
capacity has shown remarkable progress and the task of person
re-identification plays a critical role in video surveillance systems.
In short, person re-identification aims to find an individual
again that has been observed over different cameras. It has
been reported that KISS metric learning has obtained the
state of the art performance for person re-identification on the
VIPeR dataset [39]. However, given a small size training set, the
estimation to the inverse of a covariance matrix is not stable
and thus the resulting performance can be poor. In this paper,
we present regularized smoothing KISS metric learning (RS-
KISS) by seamlessly integrating smoothing and regularization
techniques for robustly estimating covariance matrices. RS-KISS
is superior to KISS, because RS-KISS can enlarge the underesti-
mated small eigenvalues and can reduce the overestimated large
eigenvalues of the estimated covariance matrix in an effective
way. By providing additional data, we can obtain a more robust
model by RS-KISS. However, retraining RS-KISS on all the
available examples in a straightforward way is time consuming, so
we introduce incremental learning to RS-KISS. We thoroughly
conduct experiments on the VIPeR dataset and verify that 1)
RS-KISS completely beats all available results for person re-
identification and 2) incremental RS-KISS performs as well as
RS-KISS but reduces the computational cost significantly.

Index Terms—Incremental learning, intelligent video surveil-
lance, metric learning, person re-identification.
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I. Introduction

P ERSON RE-IDENTIFICATION aims to recognize a tar-
get of interest over different camera views at different

locations and thus, it benefits the booming area of the public
security, especially when biometrics, e.g., face [39], gait [61]
and fingerprint [7], are not available. In recent years, person
re-identification exploiting the body appearance [1], [3], [8],
[31], [34], [42], [56] for identification has received increasing
attention. This task is challenging, because of small target size,
partial occlusion, motion blur, and appearance variation.

In general, person re-identification can be regarded as a
special task of the visual retrieval problem [39], i.e., by treating
the target of interest as search query, the specific computer
system searches the correct match among candidates recorded
from different camera views. Typically, it consists of two
important stages. First, robust visual features are extracted to
represent a person. Second, an effective and efficient matching
model is applied to conduct high performance search.

In recent years, a large number of interesting schemes have
been proposed to improve the performance of re-identification.
We can simply group these schemes into two categories: 1)
schemes for extracting new features for robust representation,
and 2) schemes for developing new matching models.

Many exciting studies about visual feature extraction and
robust representation have been presented and developed over
the past years. Most results are readily applicable to the
problem of person re-identification. Represented works are
briefed below.

Low-level visual features, such as color, texture, and shape
are popular in visual recognition. The RGB color histogram
and the HSV color histogram are robust against the variability
of resolution and perspective [23]. In addition, directly ex-
tracting color features from the bounding box areas obtained
by detection approaches is not unique. Some research results
[12], [52] utilized background subtraction algorithms [2], [59]
to minimize impacts arose by the complex background before
extracting features. Although the segmentation improves the
robustness of the extracted features, the computational cost
increases significantly. Considering that the color descriptors
are sensitive to light conditions, Gabor filters [15] and Schmid
filters [55] have been added to the feature extraction proce-
dures for robust analysis [23], [69].

Local features [6], [16], [43] obtain robust representa-
tions over interest points or regions. Scale invariant feature
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transform (SIFT) [43] is classic for extracting local features
in many computer vision systems [39]. Hamdoun et al. [25]
improved SIFT by developing SURF to obtain interest points
efficientl Bak et al. [1] selected the discriminative Haar like
features for matching tasks by utilizing the classical Adaboost
approach [18]. Local binary patterns (LBP) [45] are visual
feature descriptors that depict the local structures of an in-
terest point. Recently, LBP has been exploited for person re-
identification [39]. A comprehensive comparison of different
local features is given in [29].

Note that for person re-identification, a combination of
selected aforementioned features is usually deployed. Thus,
an efficient method of dimension reduction is necessary to
retain the most effective features for the subsequent matching
[20], [24], [67]. Principal component analysis (PCA) [32],
[36], [37] aims to find the principal subspace to achieve the
maximized variance of the projected points. It is effective
for removing the Gaussian noise. Linear discriminant analysis
(LDA) [14] is a linear supervised algorithm and aims to op-
timally classify samples drawn from Gaussians with different
means but an identical covariance. Many manifold learning
based dimension reduction techniques, such as locally linear
embedding (LLE) [51], Laplacian eigenmaps (LE) [4] and
discriminative locality alignment (DLA) [70], are developed
to consider the local geometry of a set of high dimensional
data. A unifying framework [71] was proposed to properly
understand representative manifold learning algorithms and
their respective linearizations, such as locality preserving pro-
jections [27]. Spatial pyramid matching (SPM) [40] represents
the samples by using the local SIFT features extracted from
samples. The classical SPM performs better while the classifier
is constructed by Mercer kernels.

Schemes for improving matching models are the main focus
of this paper and are important for many practical applica-
tions, such as image search [41], [46], [47], human action
recognition [49], [63], signature verification [13], [33], [65],
and face recognition [39], [57], [62]. Although existing ap-
proaches achieved top-level performance, they perform poorly
for person re-identification. As a metric learning method, KISS
Metric Learning is efficient and effective and has obtained top-
level performance on various challenging benchmarks, such
as face recognition and person re-identification [39]. It is a
statistical inference scheme that does not rely on complex
iterative optimization. This advantage is important for practical
applications and receives intensive attentions. However, KISS
has the small sample size problem for calculating the inverse
of the covariance matrices and may not perform robustly in
practice because the number of the training samples in person
re-identification is much smaller than feature dimensionality.

In this paper, we introduce the smoothing and regular-
ization techniques to largely improve KISS for person re-
identification. The estimate to a covariance matrix is biased. In
particular, the large eigenvalues of the true covariance matrix
are biased high in the estimated covariance matrix, while the
small eigenvalues of the true covariance matrix are biased
low in the estimated covariance matrix. Especially, the lower
estimate to small eigenvalues and the higher estimate to large
eigenvalues harm the utilization of the estimated covariance

matrix in the subsequent operations, such as classification. To
obtain a robust estimate to the covariance matrices for KISS,
we first introduce the smoothing technique [38] to improve
the estimate to the small eigenvalues of a covariance matrix,
and then use the regularization [17] to reduce the effect of the
larger estimate to large eigenvalues of the covariance matrix.
The improved KISS is termed regularized smoothing KISS or
simply RS-KISS.

In real video surveillance systems, the size of the labeled
training set is usually increasing along the time. Although we
can retrain the whole system, the whole process is very time
consuming. Thus, we need to find a solution to incrementally
updating the previously trained model given additional training
samples. We introduce incremental learning to RS-KISS and
further develop incremental RS-KISS (IRS-KISS) for person
re-identification.

We summarize the procedure for the RS-KISS/IRS-
KISS based person re-identification in the following steps:
1) extracting texture feature and color histogram from each
sample; 2) concatenating all the feature descriptors together
and conducting PCA to obtain a low-dimension representation
for each sample; 3) training RS-KISS or updating the distance
metric by using IRS-KISS, and 4) finding the matching rank
according the query target. Given the limited page length, we
do not detail the other parts, because implementations are easy
obtained based upon the references therein.

We organize the rest of the paper as follows. In Section II,
we briefly review related works for improving the matching
models for person re-identification. We detail the newly pro-
posed RS-KISS and IRS-KISS in Section III. Section IV shows
the experimental results on the three representative datasets
and Section V concludes the paper.

II. Related Work

In the introduction Section, we briefly reviewed popular
features used in person re-identification. In recently, training
a robust and efficiency matching scheme has been received
increasing attentions [9], [19], [41], [64], [69]. Large margin
nearest neighbor metric (LMNN) [64] are proposed to im-
prove the performance of the traditional kNN classification.
However, LMNN is time-consuming for using the k closest
within-class samples. By minimizing the differential relative
entropy between two multivariate Gaussians under constraints
on the distance function, information theoretic metric learning
(ITML) [9] is built on the Mahalanobis distance metric learned
from the information theoretic perspective. Zheng et al. [69]
proposed a soft discriminative scheme termed relative distance
comparison (RDC) by large and small distances corresponding
to wrong matches and right matches, respectively. To some
extent, the solution of RDC is complicated, and it can be
solved by an iterative optimization algorithm. The L2 dis-
tance, Mahalanobis Metric, and Bhattacharyya distance are
also applied to person re-identification [23]. However, they
perform poorly when the view conditions change greatly. As
a pairwise method, rank support vector machines (RankSVM)
[28] have been extensively used in retrieval related problems.
The Ensemble RankSVM is presented by Prosser et al. [50]
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to handle the scalability issue by using ensemble learning.
Besides distance metric learning based matching schemes,

contextual cues are very useful for improving the accuracy and
robustness of person re-identification. By utilizing subspace
learning, a brightness transfer function [35] is proposed to
deal with the illumination changes between different cameras.
Makris et al. [44] proposed a scheme to determine the topogra-
phy of cameras by observed location and velocity of moving
objects. Hamdoun et al. [25] collected interest points from
surveillance video shots to estimate the appearance model. The
contextual cues can be implemented as a preprocessing step
to improve the system of person re-identification.

III. Regularized Smoothing KISS and

Incremental Learning

It has been reported that the KISS metric learning (KISS)
has obtained the state of the art performance for person re-
identification on the VIPeR dataset [39].

Given a feature vector pair xi and xj referring to two people,
respectively, let H0 denote the hypothesis that the feature
vector pair is dissimilar (xi and xj are different people), and
H1 denote the hypothesis that the feature vector pair is similar
(xi and xj are the same person). The logarithm of the ratio
between the two posteriors is

δ
(
xi, xj

)
= log

(
p

(
H0|xi, xj

)
p

(
H1|xi, xj

))
. (1)

For classification, a positive value of δ
(
xi, xj

)
indicates xi

and xj are different people, while a negative value means xi

and xj are the same person. We denote the difference of the
feature vector pair by xij = xi − xj , and thus, we have

δ
(
xij

)
= log

(
p

(
H0|xij

)
/p

(
H1|xij

))
(2)

which can be rewritten as

δ
(
xij

)
= log

(
f

(
xij|H0

)
/f

(
xij|H1

))
+ log (p (H0) /p (H1))

(3)
where f

(
xij|H0

)
and f

(
xij|H1

)
are the probability density

functions of xij under the hypothesis of H0 and H1, re-
spectively. That means, f

(
xij|H0

)
is the probability density

functions of the difference of the similar feature vector pair,
while f

(
xij|H1

)
is the probability dense functions of the

difference of dissimilar feature vector pair. Notice that the
mean of xij is 0, and it is common to assume that xij satisfies
the Gaussian distribution. Thus, we have

f
(
xij|Hk

)
=

1

(2π)d/2 |�k|1/2 exp

(
−1

2
xT

ij�
−1
k xij

)
(4)

where k ∈ {0, 1}, d is the dimensionality of the feature vector,
and �k is the covariance matrix of xij .

Given (4), (3) can be simplified as

δ
(
xij

)
=

1

2
xT

ij

(
�−1

1 − �−1
0

)
xij+

1

2
log

( |�1|
|�0|

)
+log

(
p (H0)

p (H1)

)
.

(5)

By dropping the constant terms, we have

δ
(
xij

)
= xT

ij

(
�−1

1 − �−1
0

)
xij. (6)

Define yij as the indicate variable of xi and xj: yij = 1 if xi

and xj are the same person, otherwise yij = 0. Let N0 denote
the number of similar feature vector pairs, while N1 denote
the number of dissimilar feature vector pairs. The covariance
matrices are estimated as follows:

�0 = 1
N0

∑
yij=0 xijxT

ij = 1
N0

∑
yij=0

(
xi − xj

) (
xi − xj

)T

�1 = 1
N1

∑
yij=1 xijxT

ij = 1
N1

∑
yij=1

(
xi − xj

) (
xi − xj

)T . (7)

Let M = �−1
1 −�−1

0 , KISS projects M onto the cone of the
positive semi-definite matrices M̃, i.e.

δ
(
xij

)
= xT

ijM̃xij. (8)

A. RS-KISS Metric Learning

The estimates to covariance matrices in (6) are critical
to obtain robust performance for person re-identification. In
practice, it is impossible to collect a large amount of labeled
samples to effectively estimate the small eigenvalues of the
covariance matrices in person re-identification.

It is known that the estimate to a covariance matrix is always
biased. Given a small size training set, the large eigenvalues
of the true covariance matrix are biased high in the estimated
covariance matrix, while the small eigenvalues of the true
covariance matrix are biased low in the estimated covariance
matrix. This biased estimation problem is related to ill-posed
problem.

In statistics, there are many ways to obtain robust estima-
tions. In this paper, we introduce the smoothing technique
[38] and the regularization method [17] to improve estimates
to covariance matrices in KISS, because the smoothing tech-
nique can enlarge the estimate to the small eigenvalues of a
covariance matrix and the regularization technique can reduce
the effect of the larger estimate to large eigenvalues of an
estimated covariance matrix. By seamlessly integrating them,
we can consequently improve the effectiveness of KISS for
person re-identification.

We first diagonalize the covariance matrix �i

�i = �i�i�
T
i (9)

where �i = diag [λi1, λi2, · · · , λid] with λij being an eigen-
value of �i, and �i = [φi1, φi2, · · · , φid] with φij being an
eigenvector of �i. Substitute (9) into (6), we have

δ
(
xij

)
= xij

(
�−1

1 − �−1
0

)
xT

ij

= xij

(
�1�

−1
1 �T

1 − �0�
−1
0 �T

0

)
xT

ij

=
[
�T

1 xij

]T
�−1

1

[
�T

1 xij

] − [
�T

0 xij

]T
�−1

0

[
�T

0 xij

]
=

∑d
n=1

1
λ1n

(
φT

1nxij

)2 − ∑d
n=1

1
λ0n

(
φT

0nxij

)2
.

(10)

According to the smoothing technique, we first replace
the small eigenvalues of the covariance matrix with a small
constant βi, and then we have

�i = diag

⎡
⎣λi1, λi2, · · · , λik, βi, · · · βi︸ ︷︷ ︸

d−k

⎤
⎦ (11)
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where the constant βi takes the value of the average of all the
small eigenvalues

βi =
1

d − k

d∑
n=k+1

λin. (12)

Thus, (10) can be written as

δ
(
xij

)
=

∑d
n=1

1
λ1n

(
φT

1nxij

)2 − ∑d
n=1

1
λ0n

(
φT

0nxij

)2

=
∑k

n=1
1

λ1n

(
φT

1nxij

)2
+

∑d
n=k+1

1
β1

(
φT

1nxij

)2

− ∑k
n=1

1
λ0n

(
φT

0nxij

)2 − ∑d
n=k+1

1
β0

(
φT

0nxij

)2

(13)

By introducing
∥∥xij

∥∥2
to (13), we can avoid calculating∑d

n=k+1
1
β1

(
φT

1nxij

)2
and

∑d
n=k+1

1
β0

(
φT

0nxij

)2
. Then we have

δ
(
xij

)
=

∑k
n=1

1
λ1n

(
φT

1nxij

)2
+ 1

β1

(∥∥xij

∥∥2 − ∑k
n=1

(
φT

1nxij

)2
)

− ∑k
j=1

1
λ0n

(
φT

0nxij

)2 − 1
β0

(∥∥xij

∥∥2 − ∑k
n=1

(
φT

0nxij

)2
)

=
(

1
λ1n

− 1
β1

) ∑k
n=1

(
φT

1nxij

)2
+

(
1
β1

− 1
β0

) ∥∥xij

∥∥2

−
(

1
λ0n

− 1
β0

) ∑k
n=1

(
φT

0nxij

)2

(14)
Equation (14) shows that the score of metric is weighted by

the small eigenvalues.
The covariance matrix (9) is further interpolated by an

identity matrix according to the regularization technique [17],
i.e.

�̃i = (1 − γ) �i + γαiI
= (1 − γ) �i�i�

T
i + γαi�i�

T
i

= �i

[
(1 − γ) �i + γαiI

]
�T

i

(15)

where αi = (1/d) tr (�i) and 0 < γ < 1. The parameter γ can
shrink �̃i toward identity matrix. A shrunken estimate of the
covariance matrix will suppress the larger estimate to the large
eigenvalues and thus, improve the prediction performance in
practice [17], [26].

By substituting (11) to (15), we have

�̃i=�i{diag[ (1 − γ) λi1 + γαi

(1 − γ) λi2 + γαi, · · · , (1 − γ) λik + γαi

(1 − γ) βi + γαi, · · · , (1 − γ) βi + γαi︸ ︷︷ ︸
d−k

]}�T
i .

(16)

We define

�̃i = diag[ (1 − γ) λi1 + γαi

(1 − γ) λi2 + γαi, · · · , (1 − γ) λik + γαi

(1 − γ) βi + γαi, · · · (1 − γ) βi + γαi︸ ︷︷ ︸
d−k

]. (17)

Replace �i with �̃i in equation (10), we obtain

δ
(
xij

)
= xij

(
�̃−1

1 − �̃−1
0

)
xT

ij

= xij

(
�1�̃

−1
1 �T

1 − �0�̃
−1
0 �T

0

)
xT

ij

=
[
�T

1 xij

]T
�̃

−1
1

[
�T

1 xij

] − [
�T

0 xij

]T
�̃−1

0

[
�T

0 xij

]
(18)

By substituting (17) to (18), we have

δ
(
xij

)
=

∑k
n=1

1
(1−γ)λ1n+γα1

(
φT

1nxij

)2

+ 1
(1−γ)β1+γα1

(∥∥xij

∥∥2 − ∑k
n=1

(
φT

1nxij

)2
)

− ∑k
n=1

1
(1−γ)λ0n+γα0

(
φT

0nxij

)2

− 1
(1−γ)β0+γα0

(∥∥xij

∥∥2 − ∑k
n=1

(
φT

0nxij

)2
)

=
(

1
(1−γ)λ1n+γα1

− 1
(1−γ)β1+γα1

) ∑k
n=1

(
φT

1nxij

)2

+
(

1
(1−γ)β1+γα1

− 1
(1−γ)β0+γα0

) ∥∥xij

∥∥2

−
(

1
(1−γ)λ0n+γα0

− 1
(1−γ)β0+γα0

) ∑k
n=1

(
φT

0nxij

)2
.

(19)

Similar to (14), we also introduce
∥∥xij

∥∥2
to (19) to reduce

the computational cost. Given (19), it is straightforward to
conduct matching or retrieval by ranking reference images xj

according to δ
(
xij

)
given a query target xi. A reference image

corresponding to a smaller δ
(
xij

)
ranks near the top.

B. Incremental RS-KISS Metric Learning

One critical challenge of person re-identification is that the
model needs to be updated to incorporate the information
carried by the new labeled training samples. We consider
two instances of incremental learning in practical scenarios.
First, the newly acquired samples are taken from a person
that has not been learned by RS-KISS. Second, the newly
acquired samples are taken from a person that has been already
learned by RS-KISS. We can also understand the new acquired
samples are taken from the person’s track history. Thus, we
propose the incremental learning for RS-KISS.

Given two sets X = {xi} for i = 1, 2, · · · , N and Y =
{

yj

}
for j = 1, 2, · · · , L, which are sets of difference of similar
feature vector pairs. Similar to RS-KISS, we assume that the
mean vectors of X and Y are 0. The covariance matrices of
X and Y can be estimated by

�X = 1
N

∑N
i=1 xixT

i

�Y = 1
L

∑L
i=1 yiyT

i

. (20)

The whole set Z = X ∪ Y = {zi}, i = 1, 2, · · · , N + L thus
has a zero mean. The covariance matrix of Z is given by

�Z =
1

N + L

N+L∑
i=1

zizT
i . (21)

By substituting (20) to (21), we have

�Z = 1
N+L

∑N+L
i=1 zizT

i

= 1
N+L

(∑N
i=1 xixT

i +
∑L

i=1 yiyT
i

)
= N

N+L

(
1
N

∑N
i=1 xixT

i

)
+ L

N+L

(
1
L

∑L
i=1 yiyT

i

)
= N

N+L
�X + L

N+L
�Y .

(22)

Given (22), it is straightforward to have an incremental
learning strategy to update RS-KISS. In particular, we can
regard X including the original training examples, while Y

including the new training examples. To get the covariance
matrix of the whole set Z = X

⋃
Y , we only need to compute

the covariance matrix of Y , and then update the covariance
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matrix �X by simply adding a re-scaled �Y . This incremental
learning strategy saves the computational time.

The covariance matrix of difference of dissimilar feature
vector pairs can be obtained in the same way.

After updating the covariance of �0and �1, the metric
δ
(
xij

)
= xT

ij

(
�−1

1 − �−1
0

)
xij can be updated accordingly.

For person re-identification, although the dimensionality of
the original feature vector is high, PCA is usually applied
before the metric learning to significantly the redundancy.
Thus, we can consider incremental PCA [5] to update the
projection matrix given a set of additional training examples.
Then, we apply the incremental RS-KISS metric learning to
update the metric for matching. Note that the matrix inverse
operation takes O

(
d2.4

)
and the calculation of a covariance

matrix costs O
(
nd2

)
, where the number of examples nis

usually much larger than the feature dimensionality d. Thus,
incrementally update covariance (saves O

(
Nd2

)
) is the key to

reduce the time cost for computation. In practice, N is larger
than L, so IRS-KISS is preferred.

IV. Experimental Results

In this section, we conducted the experiments of person
re-identification on the widely used three datasets, including
the VIPeR dataset [22], the ETHZ dataset [11], [56] and
the i-LIDS MCTS dataset [68] to validate the effectiveness
of the proposed RS-KISS. The VIPeR dataset contains 1264
images collected from 632 individuals. The ETHZ dataset
contains 8555 images collected from 146 individuals. The
i-LIDS MCTS dataset contains 476 images collected from
119 individuals. Note that these datasets have very different
average number samples per person. Thus, they are suitable
for evaluating person re-identification schemes under different
scenarios. Images are normalized to a standard size of 128×64
and this manipulation causes shape distortion that has limited
effect on the human visual systems [22], [58]. For each image,
the local binary pattern (LBP) descriptors, HSV histograms,
and Lab histograms are used to represent each normalized
image [39]. The performance is measured by the average
cumulative match characteristic (CMC) curves. To compare
RS-KISS against other top-level person re-identification tech-
niques, we have strictly followed the experimental settings of
[39], [69]. Details of the experimental setup and baseline mod-
els are given below. In addition, we have carefully prepared
the incremental learning scheme on the VIPeR dataset and the
ETHZ dataset to demonstrate the effectiveness of IRS-KISS.

A. Experimental Settings

There are two different kinds of experimental settings in per-
son re-identification. Some of the previous researches regard
person re-identification as a process that template images of
each person are selected and matched against probe images
by matching models [10], [52]. Satta et al. [54] proposed
multiple component matching (MCM) to unify the popular
person re-identification schemes to better understand the in-
trinsic differences of these schemes. In this paper, we use
another method for performance evaluation. The procedure is

Fig. 1. Some typical samples from the VIPeR dataset. There are same-person
paired samples from different camera views in each column. Variations can
be observed, such as viewpoint, pose, shooting locations, illumination, and
image quality.

summarized as follows: collecting images of several individ-
uals and classifying a new collection of images of different
individuals. This method can be deemed as a simple binary
classification problem or pair matching technique, and aims
to judge whether or not the two images come from a same
person. Recently, this pair matching technique has received
intensive attentions in person re-identification [39], [69].

In this paper, we present RS-KISS to learn an effective
distance metric to measure the distance between two images
for person re-identification. It is important to show that the
learned metric is robust to different people for re-identification.
Thus, we use the second kind of experimental setting, i.e.,
learning a distance metric on set A while testing the learned
metric on set B. This kind of evaluation can demonstrate the
robustness of RS-KISS for different datasets.

B. Datasets

The widely used VIPeR Dataset is collected by
Gray et al. [22] and contains 1264 outdoor images obtained
from two views of 632 subjects. Example images are shown
in Fig. 1. Each intrapersonal image pair is shown in one
column. Intrapersonal image pairs may contain a viewpoint
change of 90 degrees. Other variations are also considered,
such as light conditions, shooting locations, and the image
qualities. Thus, it is challenge to conduct image-based person
re-identification on the VIPeR dataset. In our experiments, all
samples of p subjects are selected to form the training set,
while the rest is used for test. We set p = 100 and p = 316,
respectively, to evaluate the matching performance of different
algorithms. In the training stage, we used intrapersonal image
pairs as similar pairs and generated interpersonal image pairs
(by randomly selecting two images from different subjects)
as dissimilar pairs. In the test stage, we randomly divided a
test set into two parts, CAM A (a gallery set) and CAM B (a
probe set), by randomly putting one image in an intrapersonal
image pair in CAM A and another in CAM B. By calculating
the CMC curve, we can obtain a ranking for each example in
the gallery with respect to the probe. We repeated the above
procedure 10 times, and then the average cumulative match
characteristic (CMC) curves were depicted.
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Fig. 2. Some typical samples from the ETHZ dataset. There are same-person
samples cropped from the video sequence in each row. We can observe minor
variations, including slight changes of viewpoint, pose, shooting locations,
illumination, and image quality.

On the VIPeR dataset, we design the incremental learning
experiment by considering the first situation. We randomly
selected p = 100 people to train RS-KISS. Then, we randomly
added ip = 50, 100, 150, 200, and 250 people and applied IRS-
KISS to update the metric obtained by RS-KISS, respectively.
In addition, we randomly selected 270 people, which are blind
to RS-KISS and IRS-KISS, for test. The above procedure was
repeated 10 times, and then the average CMC curves were
depicted.

The ETHZ Dataset is collected by Ess et al. [11] and widely
used for person detection and tracking. Subsequently, Schwartz
et al. [56] applied it to person re-identification. There are 8555
images collected from 146 individuals. Some typical example
images are given in Fig. 2. Compared with the VIPeR dataset,
the ETHZ dataset has more samples collected from a subject.
Minor variations include the slight changes of viewpoint, pose,
shooting locations, illumination, and image quality. In our
experiments, all samples of p subjects are selected to form the
training set, while the rest is used for test. We set p = 76 and
p = 106, respectively, to evaluate the matching performance
of different algorithms. The above procedure was repeated 10
times, and then the average CMC curves were depicted. In the
training stage, we used the above method to generate similar
pairs and dissimilar pairs. In the test stage, we randomly
selected one sample for each person to build the gallery and
rest for the probe.

On the ETHZ dataset, we design the incremental learning
experiment considering the second situation. We randomly
selected p = 100 people to set up the training set and
the rest people were used to form the test set. After ran-
domly selecting b = 2 images of each person to train
RS-KISS, we randomly selected ib = 1, 2, 3, 4 images
of each person again and applied IRS-KISS to update the
metric obtained by RS-KISS, respectively. The process was
repeated 10 times, and then the average CMC curves were
depicted.

The i-LIDS MCTS dataset [68] was taken at a busy airport

Fig. 3. Some typical samples from the i-LIDS MCTS dataset. There are
same-person samples cropped from the video sequence in each row. We
can observe minor variations, including slight changes of viewpoint, pose,
shooting locations, illumination and image quality. However, many images
contain occlusion contaminations.

hall. There are 476 images collected from 119 individuals.
We show some typical examples in Fig. 3. Compared with
the above two datasets, some images in this dataset have
occlusions, because crowds of people always carry big or small
baggage. In our experiments, all samples of p subjects are
selected to form the training set, while the rest is used for
test. We set p = 89 to evaluate the matching performance of
different algorithms. The process was repeated 10 times, and
then the average CMC curves were depicted.

C. Feature Descriptors

It is known that both texture feature and color histogram are
useful for person re-identification. According to [39], the LBP
descriptors, HSV histogram and Lab histogram are extracted
from overlapping blocks of size 8 × 16 and stride of 8 × 8 on
each image. HSV and Lab histograms encode the different
color distribution information in the HSV and Lab color
spaces, respectively. LBP descriptors are used to extract texture
features. All the feature descriptors are concatenated together.
We conducted PCA to obtain a low-dimension representation,
to accelerate the learning process, and reduce signal noise. The
details can be referred to [39].

D. Baselines and Performance Measures

In this Section, to validate the effectiveness of proposed
RS-KISS, we compare five representative metric learning
approaches, including Euclidean distance (L2), Mahalanobis
metric (MM), information theoretical metric learning (ITML)
[9], metric learning for large margin nearest neighbor (LMNN)
[64], and KISS [39]. Each of these methods has its own merits.
The L2 distance is used to construct a baseline in most existing
person re-identification works. Mahalanobis Metric includes
the L2 distance as a special case and can perform better than
L2 [58], [60]. ITML, LMNN and KISS are the state of the art
metric learning algorithms that have shown their effectiveness
in many applications.

The average cumulative match characteristic (CMC) curves
for illustrating the ranked matching rates are obtained over 10
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TABLE I

Person Re-Identification Top Matching Rates on the VIPeR Dataset: Comparing With the Popular Algorithms

p = 100 p = 316
RANK 1 10 25 50 1 10 25 50

RS-KISS 0.098 0.405 0.608 0.765 0.245 0.666 0.847 0.930
RDC 0.091 0.344 0.535 0.697 0.157 0.539 0.752 0.879

Adaboost 0.042 0.020 0.350 0.503 0.082 0.366 0.582 0.909
Bhat 0.038 0.124 0.203 0.295 0.047 0.166 0.266 0.402
PLS 0.023 0.082 0.142 0.232 0.027 0.109 0.204 0.329

Xing’s 0.036 0.121 0.203 0.295 0.047 0.166 0.266 0.415

Some results are directly taken from [69].

TABLE II

Person Re-Identification Top Matching Rates on the ETHZ Dataset: Comparing With the Popular Algorithms

p = 76 p = 106
RANK 1 5 10 20 1 5 10 20

RS-KISS 0.770 0.921 0.962 0.985 0.835 0.963 0.984 0.996
RDC 0.690 0.858 0.922 0.969 0.727 0.901 0.956 0.988

Adaboost 0.656 0.840 0.905 0.956 0.692 0.878 0.935 0.980
Bhat 0.555 0.761 0.840 0.906 0.610 0.809 0.878 0.941
PLS 0.483 0.694 0.780 0.868 0.546 0.751 0.833 0.924

Xing’s 0.544 0.752 0.833 0.904 0.608 0.803 0.874 0.936

Some results are directly taken from [69].

Fig. 4. Performance comparison using CMC curves. In each subfigure, the x-coordinate is the rank score and y-coordinate is the matching rate. We compare
RS-KISS with L2, MM, ITML, LMNN and KISS on the VIPeR dataset. Only the top 150 ranking positions are depicted. These subfigures suggest the
effectiveness of the proposed RS-KISS.

trials to evaluate the person re-identification performance of a
particular learned distance metric. Because the complexity of
re-identification problem, the top n ranked matching rate (n is
a small value as far as possible) is considered.

E. Experimental Results and Analysis

In Fig. 4, we compare the proposed RS-KISS with KISS,
L2, MM, ITML, and LMNN on the VIPeR dataset. In each
subfigure, the x-coordinate is the rank score and y-coordinate
is the matching rate. Top 150 ranking positions are shown
in the figure. In Fig. 5, we compare RS-KISS with KISS,
L2, MM, ITML, and LMNN on the ETHZ dataset. In each
subfigure, the top 30 ranking positions are shown in the
figure. In Fig. 6, RS-KISS is compared with KISS, L2, MM,

ITML, and LMNN on the i-LIDS MCTS dataset. In each
subfigure, top 30 ranking positions are shown in the figure.
Note that LMNN performs poorly, because LMNN models
relative distance that is sensitive to the number of training
samples. RS-KISS and KISS perform at the top level.

In Tables I, II, and III, we compared RS-KISS with
other popular person re-identification approaches on the three
datasets. These approaches include RDC [69], Adaboost [1],
Bhat [69], PLS [56] and Xing’s [66]. RS-KISS performs best
in terms of rank score in most cases.

The main observations from the matching performance
comparisons are given below.

1) The proposed RS-KISS improves KISS under the situa-
tion when the size of the training set is small, because
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Fig. 5. Performance comparison using CMC curves. In each subfigure, the x-coordinate is the rank score and y-coordinate is the matching rate. We compare
RS-KISS with L2, MM, ITML, LMNN and KISS on the ETHZ dataset. Top 30 ranking positions are depicted. These subfigures suggest the effectiveness of
the proposed RS-KISS.

TABLE III

Person Re-Identification Top Matching Rates on the iLIDS

MCTS Dataset: Comparing With the Popular Algorithms

p = 76
RANK 1 5 10 20

RS-KISS 0.437 0.737 0.873 0.960
RDC 0.441 0.727 0.847 0.963

Adaboost 0.356 0.664 0.799 0.932
Bhat 0.318 0.614 0.742 0.895
PLS 0.258 0.574 0.736 0.903

Xing’s 0.318 0.626 0.773 0.906

Some results are directly taken from [69].

the covariance matrix in KISS estimated by likelihood
maximization is seriously biased given a small size
training set.

2) When the number of training samples is sufficiently
large, RS-KISS performs comparably to KISS.”

However, the success of RS-KISS for person re-
identification requires a fixed-size feature vector that repre-
sents the image of a person [30], [53], [54]. Thus, other com-
bination descriptors concatenated by un-ordered or notfixed
size sets of different local features [12], [21], [48], [52] cannot
be directly integrated with RS-KISS.

Fig. 7 shows the performance of IRS-KISS. We observed
that the newly added samples can improve the retrieval ac-
curacy. Fig. 8 uses CMC curve to compare different metric
learning algorithms, including KISS, RS-KISS, and IRS-KISS.
We randomly selected p = 158 people to form the training
set for RS-KISS. On the basis of the RS-KISS model, we
randomly selected ip = 158 people again to set up the training
set for IRS-KISS and KISS. This experiment shows that
proposed RS-KISS and IRS-KISS improve KISS. In addition,
by using IRS-KISS, we can save the training time, because the
computation of the covariance matrix is time consuming. The
time cost for matrix inverse operation is acceptable because
the matrix size is small in our experiments. In the above

Fig. 6. Performance comparison using CMC curve. In the figure, the x-
coordinate is the rank score and y-coordinate is the matching rate. We compare
RS-KISS with L2, MM, ITML, LMNN and KISS on the iLIDS MCTS
dataset. Top 30 ranking positions are depicted. These subfigures suggest the
effectiveness of the proposed RS-KISS.

incremental learning experiment, we utilized IRS-KISS to
update the metric that costs 2.7 ms while RS-KISS costs
10.1 ms for completely re-training for p = 316. We conduct
experiments on an i7-2600 3.4 GHz computer with 24-Gbyte
memory.

V. Conclusion

Distance metric is critically important for the surveillance
task person re-identification. Thus, it is rational to find a proper
distance metric learning algorithm to boost the performance of
person re-identification. In recent years, many distance metric
learning algorithms have been developed, such as information
theoretic metric learning (ITML) and metric learning for
large margin nearest neighbor (LMNN), but they are not
suitable for person re-identification. That is because there are
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Fig. 7. Experiments for IRS-KISS. (a) We conduct IRS-KISS on the VIPeR dataset. We assumed that the newly acquired samples are taken from a person
which has not been learned by RS-KISS. (b) We conduct our IRS-KISS on the ETHZ dataset. We assumed that the newly acquired samples are taken from
the people’s track history.

Fig. 8. IRS-KISS versus RS-KISS and KISS. We randomly selected
p = 158 people to form the training set for RS-KISS. On the basis of RS-KISS
model, we randomly selected another ip = 158 people to train IRS-KISS. The
performance of KISS obtained at the same condition as that for training RS-
KISS is shown for comparison. The figure suggests the effectiveness of the
proposed RS-KISS and IRS-KISS.

limited training image pairs to learn a metric in person re-
identification. Although KISS metric learning obtained the
state of the art performance, it shares the same problem. Given
a small size training sample, covariance matrices estimated
by KISS are highly biased. Therefore, we presented regular-
ized smoothing KISS or RS-KISS for short. The proposed
RS-KISS exploited the smoothing technique to enlarge the
small eigenvalues of the estimated covariance matrix and
the regularization technique to suppress the effect of the
large eigenvalues of the estimated covariance matrix. The
employed two statistical techniques effectively enlarge the un-
derestimated small eigenvalues and reduce the overestimated
large eigenvalues of the estimated covariance matrix. There-
fore, RS-KISS significantly improves KISS for person re-
identification. Given additional training examples, we advance

RS-KISS by using incremental learning. Experimental results
obtained from the three representative datasets fully demon-
strate that the proposed RS-KISS and incremental RS-KISS
are very effective in improving the performance of person
re-identification.
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